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Phase-ordering kinetics in nonconserved scalar systems with long-range interactions
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The domain growth of a system with the nonconserved scalar order parameter quenched into the or-
dered phase from a disorder phase is considered for a system with power-law interactions of the form
1/r¢*°, with 0< o <2. Our numerical simulation is consistent with a prediction by Bray [Phys. Rev. E
47, 3191 (1993)] in which the characteristic length I(¢) obeys a power law [(¢)~¢!"? for 1 <o <2 and

1(t)~t"1%9 for g < 1 in the late stage.

PACS number(s): 64.60.Cn, 64.60.My

I. INTRODUCTION

When a system with a nonconserved scalar order pa-
rameter is quenched from the high-temperature disor-
dered phase into the ordered phase, domains of two pure
phases are formed and grow with time [1]. The dynami-
cal scaling [2] is a key concept to understand the late
stage of domain growth in which the equal-time two-
point correlation function has the form

C(r/l(1)={S(x,6)S(x+1,2)) /{S(x,2)*) , (1)

where S is the order parameter, /(¢) is the characteristic
length at time ¢ after the quench, and C(X) is the scaling
function. The angular brackets in (1) indicate an average
over initial conditions.

For systems with short-range interactions, it is well
known that I(¢) obeys a power law [(z)~¢!/2 [3]. We
also know an approximate analytic form of C(X) for the
spatial dimension d > 2 [4—-6]. When analyzing an exper-
iment, one has to be aware of the possible presence of
long-range interactions. Thus, it is of interest to study
how the long-range interactions affect the phase-ordering
processes. Recently, Hayakawa, Racz, and Tsuzuki
(HRT) [7] have analyzed the phase-ordering kinetics for
vector order parameter systems with long-range interac-
tions, falling off with distance as r ¢~ 7 with 0<o <2
and the spatial dimension d. They predicted a growth
law I(¢)~¢'/? which is independent of the dimensionality
of the vector nonconserved order parameter, based on the
singular perturbation method developed by Kawasaki,
Yalabik, and Gunton (KYG). This result was shown to
be consistent with the exact solution of the spherical
model. Quite recently, Bray [8] has denied the result of
HRT and the approximation used by KYG, at least for a
system with a scalar order parameter, and predicted
1(t) ~t'1%9) for g <1 and I(¢)~t'? for 1<o<2.
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Bray’s argument [8] is more plausible than that of HRT
[7], because Bray’s theory is based on both the
renormalization-group method and the equation of inter-
face kinetics.

In this paper we attempt to check whether Bray [8] is
correct from our numerical simulation. After the Intro-
duction, in Sec. II we explain our model and summarize
Bray’s argument and its controversial point. In Sec. III
we perform simulations for two-dimensional systems
based on the cell-dynamical-systems (CDS) method [9].
The results of our simulation suggest that in the late
stage of domain growth our results are consistent with
Bray’s prediction for 0=0.5, 1, and 1.5. In Sec. IV we
discuss and conclude our results.

II. MODEL

In this section, we explain the time-dependent
Ginzburg-Landau (TDGL) model with long-range in-
teractions and with a scalar nonconserved order parame-
ter to describe phase-ordering processes. The time evolu-
tion of the order parameter is governed by

S _» ,

5, =~ VS +g )+ [dr
where g (S) is an odd function of S with zeros at S ==+1.
In this paper we restrict ourselves to the case of >0,
which means that the interaction is attractive.

Here we summarize Bray’s argument [8] based on his
interfacial picture. Equation (2) is rewritten as

6H
9,S(r,t)=———, 3
(r,1)= 5S (3)
where H is the Hamiltonian. If the system has sharp in-
terfaces, (3) can be described by the equation for inter-
faces [8,10]. In fact, (3) can be rewritten as

8H =3 [ da 8q(a)(a)

S(r',t)—S(r,t)

T —pjdte 2)

de' () , @

~ | da &q(a) |Zk(a
f q( a)_r|d+o

where 3, 8¢q(a), v(a), k(a), and §(r) are the surface ten-
sion, the virtual displacement of the interface at a, the ve-
locity of moving interface at @, and the mean profile func-
tion of S(r) at the interface a determined by the one-
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o=0.5

FIG. 1. The configurations of domains for o =0.5 at t =40 in
systems with size 256 X 256.

dimensional (1D) equation of 8H /8S =0, respectively.
To derive (4) we wuse the well-known facts 86H /
8q(a)=3k(a), 3,S=~—8'(n)(a), 8S=—5"'(n)dq(a),
and == [dn §'(n)? with the normal coordinate n of the
interface a. From (4) we obtain

S(r')
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FIG. 2. The configuration of domains for 0=1.0 at ¢t =40
which starts from the initial condition identical to Fig. 1.

This is the equation of interfaces. This equation is a
highly nonlinear and integral equation. Therefore, it is
difficult to obtain the correlation function based on the
linearization of this equation as used in a trick by Ohta,
Jasnow, and Kawasaki (OJK) [5] for the short-range case.
Bray [8], however, obtained the growth law from the con-

via)=~ K(a)-—ﬁ f dr— > (5) sideration of t_he time evolution gf a spherical droplet.
2 |r(a)—r'|¢ %7 When we consider such a case, (5) is reduced to
J
dR—__d_l_!i el 1rd —2 1 _ 1 ,
a4t R R f dr'r |r'—R|972F0 |y +R[I2¥0 sgn(r’'—R), (6)
where S’ is a constant in proportion to 3 and sgn(x)=1 _ - o=15
for x >0 and sgn(x)= —1 otherwise. To derive (6) we = = &

have used the fact that the profile function is essentially a
step function to replace S(n) by sgn(n). The integral in
(6) remains finite in the limit of R — o for o > 1. There-
fore, in this case, the growth law is given by I(z)~¢!/2.
For o <1 the integral diverges as R — o and is evaluated
as R177. In this case, for large R, the long-range part is
dominant and the growth law is given by I(z)~¢ /{119,
Note that this growth law without the short-range in-
teractions is the same as that mentioned above. Since
Bray’s argument [8] is based on a physical picture in
which the dynamics is described by the interfacial
motions, Bray’s argument is plausible, if the picture of
sharp kinks is correct.

We feel, however, that the above argument is not com-
plete. In fact, it is not difficult to illustrate the violation
of a simple sharp-kink picture which was assumed by
Bray. Let us consider the steady-state solution of (2) in a
one-dimensional system. For simplicity, we replace g (.S)
by the piecewise linear function g(S)=—S +sgn(S).
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FIG. 3. The configuration of domains for 0 =1.5 at t =40
which starts from the initial condition identical to Figs. 1 and 2.
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FIG. 4. The values of order parameter along the horizontal lines going through the center of systems for o =0.5 corresponding to

Fig. 1.

Thus, (2) is reduced to

_S=) =0. (7

;S —S+sgn($)+B [~ dx’ R

lx —
When we consider the case that a domain exists near
x =0, that is, § >0 for |x| <x,, with the boundary condi-
tion of S =—1 in the limit of |x|— o, (7) can be solved
by the Fourier transform as

! 1+4°+ql”
where W(q,x,)=2sin(gx,)/q and we use a suitable 3 to
eliminate the coefficient of |¢|°. Using the inverse of the

Fourier transform, we obtain an asymptotic form of the
profile of S for |x| >>x as

) (8)

I'o) . |owm 1
S(x)~~—1+——sin |— | | ————
2T 2 ‘x —x0|”
1 )
|x +xql°

for o < 1. Since the order parameter has a long tail as in
(9), Bray’s argument based on a simple sharp-kink picture
may not be appropriate in systems with long-range in-
teractions. Therefore, we need to check the validity of
his prediction from numerical simulations.

III. NUMERICAL SIMULATION

In order to examine the validity of Bray’s predictions
in the preceding section for nonconserved models with
long-range interactions, we perform numerical simula-
tions for two-dimensional systems. Our method is based
on the cell-dynamical-systems method proposed by Oono
and Puri [9]. To extract the essential feature of long-

range interactions we neglect the effects of the short-
range interactions.

The method of our simulation is parallel to the paper
by Hayakawa and Koga [11] which discussed phase-
ordering kinetics in a long-range exchange model. From
the CDS spirit we can write the equation for time evolu-
tion of S (n,t) at the cell point n as

S(n,t +1)=—D(—V?)°/2S(n,t)+ A4 tanh[S (n,?)] ,

(10)

where D and A4 are constants and (—V?)?/? is a symboli-

cal representation of the long-range interaction V(r)
~r 7979 This operator can be interpreted as an opera-
tor in the Fourier space

L(k)=[1—1cos(k,)—Lcos(k,)

—Lcos(k, Jcos(k,)]1°7%, (1

where k=(kx,ky)=(27rmx /N,2mm, /N) with the in-
tegers m, and m, which are less than the linear size of
the system N.

Thus, we can solve (10) as follows.

y

Let FT be the

Fourier transform. First, we transform S(n,t)gg(k,t)
into the Fourier space. Second, defining
S’"(k,t)zf,l(k)g(k,t) we come back to the real space
S '(k,t)FTr—> S’(n, t) with the introduction of the inverse of
the Fourier transform. Thus, the symbolic equation (10)
is replaced by

S(n,t +1)=—DS"'(n,t)+ A tanh[S (n,?)] (12)

and we come back to the first stage in this paragraph to
continue this process.

In our simulation, quenches are carried out at the
center of the miscibility gap. The initial values of the or-
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FIG. 5. The values of order parameter along the horizontal lines going through the center of systems for o= 1.0 corresponding to

Fig. 2.
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FIG. 6. The values of order parameter along the horizontal lines going through the center of systems for 0 =1.5 corresponding to

Fig. 3.

der parameter on the cell are distributed at random be-
tween —0.125 and 0.125. In order to avoid the depen-
dence of a special initial configuration of the order-
parameter field, we have performed ten runs for o =0.5,
1.0, and 1.5. Our main results are obtained from simula-
tions up to ¢ =100 with system size 256X256 in the cell
unit with the periodic boundary condition and the pa-
rameters used in (12) are D =0.5 and 4 =1.3. Note that
a typical domain size in the late stage for small systems is
as large as the linear size of systems for small o. Thus,
for 0 =0.5, we also simulate systems with sizes 512X 512
and 1024X 1024 up to ¢t =800 to check the finite-size
effects.

Figures 1-3 display domain configurations of
256 X256 systems for o0 =0.5, 1.0, and 1.5 at t =40 from
identical initial configurations. In these figures positive
regions of the order parameter are shaded. We can
recognize that the pattern evolution is faster with de-
creasing o. Figures 4-6 display the order-parameter
values along horizontal lines going through the center of
systems, corresponding to Figs. 1-3, respectively. In
contrast to the speed of pattern evolutions, the evolution
of the values of order-parameter field is slow with de-
creasing o. In particular, we note that the order-
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FIG. 7. Log-log plots of the characteristic length /(¢) vs time
in systems for o =0.5, 1.0, and 1.5 with size 256 X256 after ten
times the average of different initial conditions.

parameter value does not saturate its equilibrium value
even in the central part of domains due to long tails as
discussed in the preceding section. Thus, a simple pic-
ture of sharp kinks assumed by Bray [8] may not be ap-
propriate for small o.

The time dependence of the characteristic length /(¢) is
shown in Fig. 7. The characteristic length is defined by
the ratio of “the total area” to “the total length of inter-
faces” where the interface means the lines of S =0. We
estimate the values of the growth exponent z defined
through 1(¢)~t!/% for 50<¢ <75 as 0.88, 1.94, and 2.10
for 0=0.5, 1.0, and 1.5, respectively, from 256X256
simulations, although we are afraid that the determina-
tion of z in such a short interval is meaningless. The
growth exponent z is almost 2 for both 0 =1.0 and 1.5,
which is consistent with Bray’s prediction [8]. Note that
our estimated value of z for 0 =0.5 is much smaller than
the theoretical value z =3 /2. Since this discrepancy may
arise from finite-size effects of systems at 0 =0.5, we ex-
amine the plot /(¢)t ~2/3 versus time for simulations with
system sizes 256X256, 512X512, and 1024X1024 in
Fig. 8. This figure displays I(z)~t2/> or z=1.5 for
80 <t <300 in systems with size 1024 X 1024, while there
are no such regions in systems with sizes 256 X256 and
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FIG. 8. The plot of /(¢)t "2/3 vs time for systems at 0 =0.5
with sizes 256X256, 512X 512, and 1024 X 1024 after ten times
the average of different initial conditions.
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C(X)

X =r1/I(t)

FIG. 9. The scaling plots of the spatial correlation function
at t =50 (A), 65 (O), and 80 (®) for o =1.0 with system size
256 X256.

512X 512 due to finite-size effects. Our result may sug-
gest that Bray’s prediction [8], z=1+o0 for o <1 and
z =2 for o > 1, is correct for large systems in spite of the
existence of long tails in order-parameter profile.

We also calculate the equal-time pair-correlation func-
tion. The dynamical scaling in systems with size
256X256 seems to be satisfied for 0 =1.0 and 1.5 after
t =50 (Figs. 9 and 10). For 0 =0.5 we use the data of the
spatial correlation function in systems with 1024X1024.
Even in large size systems the dynamical scaling is not
good during the time region in which I(f)~¢2/? is
satisfied (Fig. 11). We may need the simulation of larger
systems than ours to obtain scaling. Our simulation for
o=1.0 and 1.5 also suggests that the tails obey the power
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X = r/I(t)

FIG. 10. The scaling plots of the spatial correlation function
for o =1.5. The details of this figure are the same as those in
Fig. 9.
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FIG. 11. The scaling plots of the spatial correlation function
for 0 =0.5 in systems with size 1024 X 1024.

law as observed by HRT [7]. Note that our data are
disordered for large X =r /I (t), because the effects of the
periodic boundary condition and long-range interactions
lead to confusion as to what cells are close to the ob-
served cell. Thus, the data for » ~N /2 with the linear
system size N are almost meaningless for the calculation.

IV. DISCUSSION

Our numerical result for d =2 can be summarized as
follows. (i) Our result for 0 =1.0 and 1.5 with system
sizes 256X256 is consistent with Bray’s prediction [8]
based on interfacial kinetics is correct in the late stage.
(ii) For 0=0.5 we need to consider the finite-size effects.
Our result with 1024 X 1024 is consistent with Bray’s pre-
diction [8], although small systems do not achieve Bray’s
region. (iii) The dynamical scaling of the spatial correla-
tion function seems to be satisfied for 0 =1.0 and 1.5
even in small size systems, while scaling cannot be ob-
served at 0 =0.5 even in large system sizes. (iv) We ob-
serve the tail obeying power laws for large X =r /I (t) of
the spatial correlation function.

Quite recently, Ohta and Hayakawa [12] have con-
structed an analytic theory of our systems. Their con-
clusion supports Bray’s simple picture [8] even in the
presence of long tails of the order parameter (9), because
the order-parameter profile is steep near its zeros. They
also predict the analytic form of the spatial correlation
function in which (i) the scaling is violated for o > 1 and
it is satisfied for o <1 at finite ¢ and (ii) the scaling form
in the long-time limit for o =1 is the same as that for
short-range interactions [S]. It is interesting that their
prediction may not be consistent with our result. We can
guess that (a) observed tails of the spatial correlation
function in our simulation disappear in the long-time lim-
it and (b) the scaling may be satisfied for large systems
even at 0 =0.5. In fact, if we only focus on the short-
time interval between ¢t =100 and 130, an approximate
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FIG. 12. Comparison of the scaling form of the spatial corre-
lation function between our simulation for 100=<7 <130 with
the system size 1024X1024 and the theory by Ohta and
Hayakawa [12] (dashed line) at 0 =0.5.

scaling form of C(X) agrees with that of Ohta and
Hayakawa [12] (Fig. 12). The details of the discussions
have been found in the paper by Ohta and Hayakawa
[12].
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After submission of this paper, we received some
relevant papers related to our work. Lee and Cardy [13]
simulated 1D Ising spin by using the Monte Carlo simu-
lation (MCS). Their results are consistent with Bray’s
prediction for 0 =1.0 and 1.5, while they are not con-
sistent for 0 =0.5. Rutenberg [14] suggested that a con-
sistent result with Bray’s prediction [8] can be obtained
even in the case of 0 =0.5 from MCS for 1D Ising spins
for large systems. These papers are consistent with our
results. There are several papers to generalize our situa-
tions. Bray and Rutenberg [15] have generalized Bray’s
argument [8] to systems with O (n) symmetric order pa-
rameters and a global conserved but local nonconserved
model. Hayakawa [16] also obtained the spatial correla-
tion function for large n with global conserved but local
nonconserved order parameter. In these cases, a simple
dimensional counting like that of HRT [7] and KYG [4]
is not correct for small n. Using the critical condition by
Bray and Rutenberg [15], the HRT result may be correct
forn >2.
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